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Executive Summary

The Law School Admission Council (LSAC) is in the midst of a research program to determine the
advisability and feasibility of developing a computerized version of the Law School Admission Test (LSAT).
In any testing situation, it is essential that items are fair to all subgroups of test takers. If one'subgroup is
performing better than another on an item—although both subgroups have been matched on ability—
then such an item will be cause for concern. This phenomenon is known as differential item functioning or
simply DIF. Even though reliable statistical procedures have been developed for detecting DIF items on
paper-and-pencil tests, computerized adaptive tests (CATs) pose obstacles that require the development
of new procedures.

DIF analyses require comparing the performance of test takers from different subgroups by carefully
selecting test takers who have been matched on some measure of ability level. With a paper-and-pencil test,
the matching criterion is typically the number-right score on all the items, including the item being studied
for DIF. The inclusion of the score on the studied item helps control for statistical error due to impact
(group-average ability differences). However, with a CAT different test takers take different items according
to their measured ability levels. Thus, they all get similar number-right scores, and number-right score
cannot be used as a criterion for ability level matching. Hence, a new matching criterion must be developed.
Also, a new method to control for statistical error due to impact must be developed.

The current paper proposes a new DIF procedure for CATs which overcomes these obstacles. The
procedure is called CATSIB as it is a modification of the SIBTEST DIF procedure that is used with
paper-and-pencil tests. CATSIB matches test takers on estimated ability level, an estimate that a CAT
produces for each test taker. To control for statistical error due to impact, a correction is applied to these
ability estimates—a correction that is based on a similar correction used with SIBTEST.

To evaluate the performance of the new procedure, a simulation study was conducted. The simulated
testing situation consisted of test takers receiving 25 adaptively administered operational items (from a pool
of 1,000) and 16 linearly administered pretest items that were evaluated for DIF. The simulated pretest items
were statistically designed to display varying known amounts of DIF, and CATSIB was applied to these data
to see how well it could detect and estimate these known amounts of DIF. Also, various levels of impact
were simulated to see how well CATSIB could control for impact-induced statistical error. The simulation
results showed that CATSIB was very effective in controlling statistical error due to impact, even for large
average group ability level differences. CATSIB also performed well in detecting and estimating the
simulated amounts of DIF in the items, exhibiting detection rates of over 90% for sample sizes of 500 in each
subgroup and over 60% for sample sizes of 250 in each subgroup. Future research is planned to further
improve CATSIB performance.

Abstract

Computerized adaptive tests (CATs) pose major obstacles to the traditional assessment of differential
item functioning (DIF). Test takers cannot be matched on number-right score, and new methods need to be
developed to control for Type I error inflation due to mean performance differences (impact) between the
reference and focal groups. To this end, a modified SIBTEST procedure—CATSIB—is proposed, which
matches test takers on estimated ability based on unidimensional item response theory. To control for
impact-induced Type I error inflation, the SIBTEST regression correction is shown to have an easily
implemented and theoretically justified counterpart in the CAT setting.

A simulation study was conducted to evaluate the performance of CATSIB. Simulated test takers were
adaptively administered 25 simulated operational items from a pool of 1,000, and were linearly administered
16 simulated pretest items that were evaluated for DIF. The pretest items were designed to represent varying
levels of discrimination, difficulty, and amounts of DIF. Sample size varied from 250 to 500 in each group.
Simulated levels of impact ranged from 0 to 1 standard deviations difference in mean ability levels.

The results showed that CATSIB with the regression correction displayed very good control over
Type I error, whereas CATSIB without the regression correction displayed impact-induced Type I error
inflation. In terms of power, even with as few as 250 test takers in each group, CATSIB had detection rates
of 64% or greater for large values of DIF. When sample size was increased to 500 in each group, these
power rates increased to over 90%. CATSIB displayed nearly unbiased estimation under nearly all the
simulated conditions.
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Introduction

Computerized testing and computerized adaptive testing (CAT) are becoming increasingly popular for
standardized tests. For example, test takers can now opt for computerized adaptive tests of the Graduate
Management Admission Test (GMAT), Graduate Record Examination (GRE), and the Armed Services
Vocational Aptitude Battery (ASVAB). Moreover, the Law School Admission Council (LSAC) is in the midst
of a research plan to evaluate the advisability and feasibility of a computerized version of the Law School
Admission Test (LSAT). In any testing situation, it is essential that items are fair to all subgroups of test
takers. In other words, if—on an item—one subgroup is doing better than the other, although both
subgroups have been matched on ability, then such an item will be cause for concern. This phenomenon is
known as differential item functioning (DIF). A number of studies have been conducted using different
methodologies to investigate DIF on paper-and-pencil tests. In a typical paper-and-pencil test, most DIF
analyses involve matching test takers on the number-correct score, a traditional matching criterion.
However, in the context of CAT, not all test takers take the same items, and sometimes not all take the same
number of items. Hence one cannot directly apply methods developed for paper-and-pencil tests to assess
DIF of CAT items. Zwick, Thayer, and Wingersky (1994, 1995) have studied DIF on computerized adaptive
test items using a modified version of the Mantel Haenszel methodology. Roussos (1996) has developed a
modified version of SIBTEST, called CATSIB, to identify DIF items of an adaptive test using a matching
criterion based on CAT ability estimates. Roussos, however, investigated only the Type I error performance
of CATSIB and only under standard paper-and-pencil (linear) testing conditions. The purpose of the present
study was to investigate the performance of CATSIB to identify DIF items of adaptive tests through
simulations. Both the Type I error rate and power level were of interest in the present study. CATSIB will be
briefly described below, followed by details of the simulation study, results, and discussion.

CATSIB

An item is said to display DIF when test takers of equal proficiency (on the construct measured by the
test), but from separate populations, differ in their probability of answering the item correctly. The
proficiency of a test taker on the construct will be referred to as 6. The item that is being tested for DIF is
commonly referred to as the studied item. The populations of interest for DIF analyses are most commonly
based on ethnicity or gender. The populations are categorized into a reference (R) group population (for
example, Caucasians or males) and a set of focal (F) group populations (for example, various minority groups
or females).

Using the above terminology, a studied item is said to display DIF when reference group test takers and
focal group test takers who have been matched on 6 do not have the same probability of a correct response
on the item. One common procedure for modeling and simulating DIF in an item is to use a different item
response function (IRF) for the reference group than for the focal group. The reference group IRF is denoted
by Pr(6) and the focal group IRF by P(6).

Let DIF(6) be defined as the magnitude of DIF in a studied item at a particular value of 6. A variety of
formulations of DIF(6) exist in terms of Pg(6) and P(6). We employ the formulation used by the Shealy and
Stout (1993) SIBTEST procedure,

DIF(6) = P,(6) - P,(6), (1)

which is also the formulation used by the standardization procedure of Dorans and Kulick (1986). DIF is
then defined as an average of DIF(0) over 6. Employing the SIBTEST terminology, this average is denoted by
B. which is given by

B = DIF(6)f(6)d6, @

where f(6) is an appropriate density function on 8 such as that for the combined R and F groups. Hence, the
null hypothesis for DIF hypothesis testing is stated as

H,:p =0

6




An important aspect of any DIF procedure is to select R and F test takers that are matched on ability
before comparing their performance on the studied item. For didactic purposes, let us consider the case of
estimating f for a pretest studied item. With paper-and-pencil tests, SIBTEST matches test takers based on
estimated true score from the operational items of the test. The use of estimated score instead of simple
observed score is referred to in the SIBTEST literature as the regression correction. This term refers to the fact
that when R and F differ in mean observed score, the regression of true score on observed score will also
differ between the two groups (Eg[T | X]#E[T | X]). Since true score is monotonically related to 6, if this
disparity were not corrected for by the regression correction, estimation bias and correspondingly inflated
Type I error would result.

Just as the R and F groups may differ in their observed score distribution means in the paper-and-pencil
setting, they may differ in their mean values of estimated 6 in the CAT setting. In this paper, we will refer to
the difference in the means of the 6 distributions as impact, which we will denote byd,.=u o, ~Hg,r where
M, and pu, are the means of the ability distributions of the R and F groups, respectlvely Just as
observed-score impact can result in estimation bias and inflated Type I error in the paper-and-pencil setting,
the presence of impact in the CAT setting can have the same effect. Specifically, when impact is present, the
use of estimated 8 (denoted by ) as the matching variable in the estimation of 8 could lead to a high Type I
error because Ez[018] can be much different from Ef(61 8]. Therefore, in order to avoid the high Type I error
rate, CATSIB employs a regression correction that is theoretically equivalent to that which SIBTEST employs
with paper-and-pencil tests. Instead of matching test takers on §, CATSIB matches test takers on an estimate
of E¢[016], which we denote by 8 * The subscript G on the expectation stands for group membership and
indicates that the regression correction is carried out separately for G=R and G =F.

The derivation of the formula for E;[016] parallels that for E;[T | X] in classical test theory, which is the
regression correction formula in Shealy and Stout’s (1993) SIBTEST. For convenience, we drop the subscript
G notation during the derivation with the understanding that all means, variances, and covariances are in
reality carried out separately in the two groups (G = R, F). First, we assume that § is an approximately
unbiased estimator for 6§, such that

f=0+e, @)

where e stands for measurement error, which is assumed to have a mean of 0 and a variance of 2. It is also
-assumed that e is uncorrelated with 6.
Thus,

Var(6)= Var(6)+ Var(e).
Rewriting, we get
0} =0}, +0%. ' (4)
We also need the equation for cov(8, 8), which is given by,

cou(d,8) = cov(d +¢,0) = a>. (5)

Now, we can derive the equation for p; _, the correlation between 6 and 6, which is given by

cov(é, 0)
pi),l) = 05}08 '
After some algebra we finally get
o, 9,
Py, = 1—;%— =5 6)
] [



By applying standard linear regression theory we obtain the following equation for E[6| 6],

. Poi
E[616) = El6] + —=— (6 - E[6])
9
Recalling that o, /0, =p_ . and reintroducing the subscript G to denote separate regression equations
forG=Rand G=F "we Gbtaifi’
E¢[616] = E¢[6] + p5 (B - E10]) 7)

where p ;. has been introduced to stand for p_ . in group G. All the quantities on the right-hand side of the

above equation can be estimated from data. Both EG[O] and E[f] are estimated by 0 the mean value of 8 in
group G. To obtain an estimate for p, an estlmate of 02 in each group must be found. This is obtained by
using the asymptotic relationship between o> and the test information function, I(6),

2 _ 1
% =1 ®

An estimate of E;[I(6)] is obtained by estimating the test information for each group G test taker who took
the studied item and then taking the average over all these test takers. The test information for a test taker is
estimated based on the value of 6 for the test taker and on the values of the item parameters for the items that
were used to obtain 8. For convenience, the true item parameters were used with each test taker’s 8 estimate
to obtain test information.

We now turn to estimation of 8. In the paper-and-pencil setting, SIBTEST estimates 8 by matching R and
F test takers on estimated true score, estimating their proportion-right scores on the studied item at each value
of estimated true score, taking the difference between the R and F proportion-right scores at each value of
estimated true score, and taking a weighted average of these differences over the different values of estimated
true score, weighting by the total number of test takers at each value of estimated true score. Ideally, CATSIB
would operate in exactly the same way except that test takers would be matched on 8 * (our notation for E[618])
instead of on estimated true score. Thus, ideally, the formula forﬂ the estimator for 8, would be

8* .
B =z [P (87)- P (67)1p(6%), )
where P(6*) is the observed proportion of group G test takers with ability estimate * who got the studied
item right and p(8*) is the observed proportion of R and F test takers at §*. Unfortunately, because 8* is a
real-valued variable, only rarely do any two test takers have the exact same value of *. Thus, it is impossible
to calculate the proportion-right score on the studied item at a specific exact value of g*. To avoid this
problem, the approach taken in this study was to divide the observed #* range into n equal intervals. Test
takers were then classified into one of the n intervals based on their values of 6*. Hence, based on these
intervals, 8 was calculated from the following equation,

B = ‘Z;[f)k,k— Pr,k]f’k' (10)

where P, is the observed proportion of group G test takers in ability interval k who got the studied item
right, and p, is the observed proportion of R and F test takers who were classified into interval k.

Because the number of intervals was arbitrary, the approach we took was to have the computer program
automatically determine the number of intervals. To ensure stable statistical estimation, an interval was
required to have a minimum of three test takers from each of R and F for that interval to be included in the
calculation of 8. All intervals with fewer than this minimum number were not used. Thus, it was important
to carefully choose the number of intervals. If too many intervals were to be used, the intervals could become
so sparsely populated with test takers that too many intervals (and, thus, too many test takers) could be
eliminated from the statistic calculation resulting in a powerless statistic. On the other hand, if too few

Q
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intervals were to be used, the test statistic could become overly sensitive to impact and its Type I error could-
become unacceptably inflated. (In the extreme case of a single interval, the statistic would reduce to being
purely a measure of impact.) To strike a balance between these two extremes, CATSIB was programmed to
automatically start with an arbitrarily large number of ability intervals (80) and to then monitor how many
test takers would be eliminated due to the throwing out of sparse cells. If more than 7.5% of either the R or F
test takers would be eliminated, CATSIB will automatically decrease the number of cells until the number of
test takers eliminated from each group becomes less than or equal to 7.5%. However, the minimum number
of ability intervals was set at 20, even if this meant that the number of test takers eliminated from one or both
of the groups sometimes exceeded 7.5%.

The standard error for 8 can then be estimated based on the observed variance of the studied item

responses in each ability interval:
A w82, (Y) 6% (Y)
6(ﬁ)=\/2[ | B, (11

k=1 Rek Re g

where Y denotes the response to the studied item, aérk(Y)is the observed variance of Y in ability interval k
for group G, and ng,; is the number of G group test takers in interval k.
The test statistic for testing the null hypothesis of no DIF is then given by

_ b
5B

B (12)

The null hypothesis of no DIF is rejected at level « if the statistic B exceeds the 100(1"- a) percentile
obtained from the standard normal table. ' - :

The estimate § serves as an index of the amount of DIF present in the item. For example, it is possible
that an item may exhibit statistically significant DIF but the degree of DIF may not be practically meaningful
in terms of how it affects the performance of test takers in the twg groups. f can be very-useful in assessing
the degree of DIF practically. It can be seen from Equation 1 that § estimates the average difference between
Rand F groups in percent chance of a correct response (conditional on 6*) on the studied item. When
B = .050, for example, the percent chance of a correct response on the studied item (conditional on ability) is
estimated to be 5 percentage points higher for the reference group than for the focal group, which is
classified here as moderate DIF. When 8 =.100, on the other hand, the conditional percent chance of getting
the studied item right is 10 percentage points higher for the reference group than for the focal group, which
is classified here as large DIF. Throughout this paper we employ the DIF classification scheme suggested by
Dorans (1989) in which .050 < 8 < .100 is considered to indicate a moderate DIF item, and 8 = .100 is
considered to indicate a large DIF item. In other settings this categorization could also be subjective
depending upon the nature of item parameters. For example, a 8 = .050 might be considered a larger effect
size for a difficult item than for an easy item because it is a greater percent of the maximum observed value.

Unique features of CATSIB are that it has a theoretically based correction for adjusting the 6s of the R
and F groups to account for the effects of impact, and it has the capability of assessing DIF for either a single
item or a collection of items. :

The Simulation Study

At LSAC, as well as at other testing companies, DIF analyses are routinely carried out during the
pretesting process. The simulation study will, therefore, mimic a pretest scenario in which test takers are
adaptively administered a fixed-length CAT composed of operational items with well estimated item
parameters and are linearly administered a certain number of pretest items with unknown statistical
properties. The objectives of the proposed study are to assess the Type I error rate and power level of
CATSIB for detecting DIF in these pretest items, using adjusted ability estimates from the adaptively
administered operational CAT items as the matching criterion.

The length of the CAT was fixed at 25 items, which is typical of a standard CAT. That is, each simulated test
taker was administered 25 items adaptively from a pool of 1,000 items. Additionally, all the simulated test takers
were also linearly administered the same 16 pretest items that were to be evaluated for DIF. Three factors were
varied in this study: the sample size, the impact level (d7), and the amount of DIF (). Three different
combinations of test taker sample sizes were selected: ng = 250, np = 250; ng = 500, ny = 250; and ng = 500,
ng = 500; where ny and np denote the sample sizes in the R and F groups, respectively. Three different impact
levels were used: 0, .5, and 1. These three d; levels correspond to differences in means of the ability

9
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distributions of R and F groups that are 0, .5, and 1.0 standard deviations apart. The sample sizes and impact
levels were completely crossed resulting in nine combinations of sample size and d; level. Three DIF levels
were used in the pretest items: no DIF (8 = 0), moderate DIF (8 = .05), and large DIF (8 = .10).

The means of ability distributions for the R and F groups were determined in such a way that their
weighted average was equal to the mean difficulty level of the CAT pool (which was equal to 0) and their

difference was equal to the desired impact level. This was accomplished by solving for u,, and u,, from the
following two equations:

Aphgr + Aphge =0

and

Hor = Mor = d;

where

ne n,

Jap = .
n, +n, n, +n,
The standard deviations of ability distributions were each set equal to 1.

In generating the item parameters of the item pool for the matching subtest, the goal was to generate
parameters that closely resembled those estimated from real data. Upon observing the descriptive properties of
the LSAT item pools, it was found that the distribution of item discrimination parameters ranged from .5 to 1.7
and followed a positively skewed distribution, while item difficulty parameters ranged from -2 to 2 and followed
the standard normal distribution. The discrimination parameters were therefore generated from a lognormal
distribution, and difficulty parameters were generated from the standard normal distribution. The lower
asymptote was independently generated from a uniform distribution to range between .12 and .22 to approximate
those from actual LSAT data. The precise distributions used for the item parameters are described below:

a, =

log(n) ~ normal (-.357, .25) for b < -1 withrange .4 <a < 1.1
log(a) ~ normal (-.223, .34) for b > -1 withrange 4<a < 1.7
b~N(0,1) withrange-3 < b <3
c~ U(12, .22).

DIF was introduced in the pretest studied items through differences in the difficulty parameters between
the R and F groups using the following model for DIF:

DIF = § =[[P,(6) - P,®)If(6)d, (13)

where
1-c¢
+
1+ exp[-17a(6 - b))

P.(0)=c , G=RorF.

(14)

There were in total 16 DIF items: 6 with 8 = 0, 5 with 8 = .05, and 5 with 8 = .1. For # = 0, six types of
studied items were chosen. These items are arbitrarily labeled item 1 to 6 and have the following respective a
and b parameters: (.4, -1.5), (:4,1.5), (.8, 0), (1.0, -1.5), (1.4;}1@, and (1.4, -1.5). The item with medium
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discrimination (.8) and medium difficulty (0) was included to represent an average LSAT item. Four of the
items represented somewhat extreme combinations of 2 and b as observed in LSAT data: low discrimination
(4) and low difficulty (-1.5); low discrimination (.4) and high difficulty (1.5); moderately high discrimination
(1.0) and low difficulty (-1.5); and high discrimination (1.4) and high difficulty (1.5). One more extreme item
(which generally does not occur with LSAT data) with high discrimination (1.4) and low difficulty (-1.5) was
included among the § = 0 items because previous studies had shown that high discriminating easy items
have a tendency for impact-induced Type I error inflation (Allen & Donoghue, 1996; Roussos & Stout, 1996).

The a and b parameters for the 5 items with § = .050 and the 5 with 8 = .100 were chosen to be parallel to
the item parameters that were assigned to the first 5 items with 8 = 0. The a parameters of items 7 to 11 and
12 to 16 were set exactly equal to the a parameters of items 1 to 5. Because items 7 to 16 had non-zero DIF, we
could not set bg and by equal to the b parameters of items 1 to 5. To keep the b parameters of items 7 to 11 and 12
to 16 similar to those of items 1 to 5, we required the weighted average of by and by (weighted by ng and ;) for
items 7 to 11 and 12 to 16 to be equal to the b parameters for items 1 to 5, respectively. The precise values for
bg and bg for items 7 to 11 and 12 to 16 are listed in Table 1.

TABLE 1
Item parameters for the simulated studied items with 8= .050 and B = .100

Difference in R and F Ability Means (d,)

d,=0 d,=.5 d, =1
Item B a b, b, b, b, b, b,
Equal Sizes for Reference Group and Focal Group

7 0.050 0.4 -1.738 -1.262 -1.739 -1.261 -1.741 -1.259

8 0.050 04 1.262 1.738 1.261 1.739 1.259 1.741

9 0.050 0.8 -0.120 0.120 -0.122 0.122 -0.129 0.127
10 0.050 1.0 . -1.691 -1.309 -1.691 -1.309 -1.689 -1.311
1 0.050 1.4 1.303 1.697 1.305 1.695 1.310 1.690
12 0.100 0.4 -1.977 -1.023 -1.978 -1.022 -1.983 -1.017
13 0.100 0.4 1.023 1.977 1.022 1.978 1.017 1.983
14 0.100 0.8 -0.241 0.241 -0.244 0.244 -0.254 0.254
15 0.100 1.0 -1.882 -1.118 -1.881 -1.119 -1.878 -1.122
16 0.100 1.4 1.109 1.891 1.113 1.887 1.122 1.878

Reference Group Twice as Large as Focal Group '

7 0.050 0.4 -1.656 -1.188 -1.656 -1.118 -1.657 -1.186

8 0.050 0.4 1.338 1.824 1.338 1.824 1.337 1.826

9 0.050 0.8 -0.080 0.160 -0.081 0.162 -0.084 0.168
10 0.050 1.0 -1.622 -1.256 -1.622 -1.256 -1.622 -1.256
1 0.050 1.4 1.359 1.782 1.361 1.778 1.367 1.766
12 0.100 0.4 -1.806 -0.888 -1.807 -0.886 -1.810 -0.880
13 0.100 0.4 1.168 2.164 1.167 2.166 1.166 2.168
14 0.100 0.8 -0.161 0.322 -0.163 0.326 -0.168 0.336
15 0.100 1.0 -1.734 -1.032 -1.734 -1.032 -1.736 -1.028
16 0.100 1.4 1.198 2.104 1.204 2.092 1.217 2.066

Items 1 to 6 were used for determining the Type I error rate of CATSIB. Items 6 to 11 and 12 to 16 were
used to investigate the power performance of CATSIB. All the pretest studied items had ¢ parameters equal
to 0.17, the average estimated ¢ parameter for the LSAT data on which our item parameters were based.

The CAT Procedure

For a given combination of test taker sample sizes (ng and ny) and impact level (dy), test takers of R and F
groups were simulated from their respective distributions'. Each test taker in each of the groups R and F
was adaptively administered a fixed length test of 25 items from a pool of 1,000 operational items. The
ability estimates of test takers were determined using a standard maximum-information CAT design
described as follows.

"The R Group test takers were simulated from N{u,, ,) distribution and the F group test takers were simulated from
N(p,; ) distribution.
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The ability scale from -2.25 to 2.25 was divided into 37 equal intervals in increments of 0.125. For each item i,
item information, [}(6), was computed at the 6 values corresponding to the midpoints of the 37 intervals
using the following formula (Hambleton, Swaminathan, & Rogers, 1991, p.91):

_ (174, (1 - c,)
e, + exp(17a,(0 - b)) + exp(-17a.(6 — b, )}’

L;(9)

where a,,b;, and ¢, denote discrimination, difficulty, and lower asymptote parameters of item i respectively.
- At each @ level the pool of operational items was sorted according to the item information values from
lowest to highest and saved in a separate table. This table was used during the simulations to select items
with the highest information at a given 6 level. _

To prevent items from becoming overexposed, an exposure control method was incorporated (Kingsbury
& Zara, 1989). Accordingly, the first item to be administered to a simulated test taker was randomly selected
from the 10 items with highest information values at 6 = 0 (the starting value for all simulated test takers).
The second item was randomly selected from the 9 best items at the new estimate of 6. The third item was
randomly selected from the 8 best items, and so on until, beginning with the 10th item, the item with the
highest information was selected (unless, of course, the item had already been administered to that
simulated test taker, in which case the next best item was selected).

After administering each item in this manner to each test taker, the simulated test taker’s response
(right/wrong) was determined, and the simulated test taker’s estimated ability, 8, was updated using
Owen'’s Bayesian sequential scoring (Owen, 1969). After all 25 items were administered, a Bayesian modal
score was calculated and was used as the final ability estimate (6).

The DIF items were then administered nonadaptively one at a time to all the test takers. After each
administration of a DIF item, the DIF estimate f and the statistic B were computed and tested for the
presence of DIF using a right-tailed test, a left-tailed test, and a two-tailed test. The left-tailed test involves
rejecting the null hypothesis of no DIF at level & = .05 if the computed z-statistic is less than -1.645. The right-
tailed test rejects if the computed z-statistic is greater than 1.645; and the two-tailed test rejects if 1z | >1.96.

For a given combination of sample size and the dy level, this process, starting from the simulation of 6s,

was replicated 400 times. The average DIF estimate § over 400 replications, its standard error, the rejection
rates for the right-tailed test, the left-tailed test, and the two-tailed test were computed for CATSIB with the
regression correction (CATSIB WRC) and for CATSIB without the regression correction (CATSIB WORC).

Results

The Type I Error Study

The results of the Type I error study are reported in Tables 2 through 5 and in Figure 1 for the no-DIF

(8 = 0) items (1 to 6). Table 2 shows the DIF estimation results: the mean values for B (ﬁ) over the 400 trials,
along with the standard errors for these mean values. The estimated DIF was close to 0 for CATSIB WRC for
all the studied items, even for high levels of impact. On the other hand, CATSIB WORC displayed increasingly

biased estimation of § as impact increased. As expected, the standard errors of § are similar for CATSIB WRC
and CATSIB WORC and show the expected behavior of decreasing with increasing sample size.
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TABLE 2 .
Type I error study DIF estimation results tabulated values: B (and its standard error)
CATSIB WRC . CATSIB WORC
Sample Sizes for Reference/Focal Groups
Item 250/250 500/250 500/500 250/250 500/250 500/500
No Group Differences in Ability Means (d, = 0)
1 .001 (.0018) -.002 (.0016) .000 (.0014) .001 (.0018) -.002 (.0016) .000 (.0014)
2 -.003 (.0023) -.002 (.0020) .001 (.0015) -.003 (.0023) -.002 (.0020) .001 (.0016)
3 -.001 (.0022) .001 (.0019) -.001 (.0015) .000 (.0021) 001 (.0019) .000 (.0015)
4 -.001 (.0014) .000 (.0012) -.001 (.0010) -.001 (.0014) .000 (.0012) -.001 (.0010)
5 .004 (.0019) -.003 (.0015) -.001 (.0014) .004 (.0019) -.003 (.0015) -.001 (.0014)
6 .002 (.0012) .000 (.0010) .000 (.0008) .002 (.0012) .000 (.0010) .000 (.0008)
Half Standard Deviation Difference in Group Ability Means (4. = .5)
1 1000 (.0019) -.002 (.0017) 1000 (.0015) .003 (.0018) 1000 (.0017) .003 (.0015)
2 -.002 (.0022) -.001 (.0020) .003 (.0016) .000 (.0022) .002 (.0020) .006 (.0015)
3 .000 (.0021) .001 (.0018) -.001 (.0016) 005 (.0021) .007 (.0018) .005 (.0015)
4 .000 (.0015) .002 (.0012) -.001 (.0010) .003 (.0015) 005 (.0012) - .002 (.0010)
5 .002 (.0019) -.004 (.0017) -.001 (.0014) .005 (.0019) .000 (.0017) .003 (.0014)
6 .001 (.0013) .002 (.0009) .002 (.0009) .004 (.0013) .005 (.0010) .004 (.0009)
One Standard Deviation Difference in Group Ability Means (d. = 1)
1 .001 (.0021) -.001 (.0019) .001 (.0016) 007 (.0020) 006 (.0019) .007 (.0016)
2 .000 (.0025) -.001 (.0022) .004 (.0018) .005 (.0025) .006 (.0022) .009 (.0017)
3 -.004 (.0024) .000 (.0022) .000 (.0016) .008 (.0023) .012 (.0021) 011 (.0016)
4 .003 (.0017) .004 (.0014) .002 (.0012) .009 (.0016) .010 (.0014) .008 (.0012)
5 .000 (.0021) -.005 (.0019) - -.002(.0015) .008 (.0021) .003 (.0019) .007 (.0015)
6 .001 (.0015) .004 (.0011) 003 (.0010) .008 (.0014) 010 (.0011) .009 (.0010)

Tables 3 and 4 show the rejection rate results for CATSIB WRC and CATSIB WORC, respectively. Because
a = .05, the observed rejection rates in Tables 3 and 4 would be expected to fall between .03 and .07, 95% of
the time (based on the exact binomial distribution) if the procedures were adhering well to the nominal level
of .05. It can be seen from these tables that some of the rejection rates were out of bounds, below .03 or above
.07. Figure 1 graphically displays the number of rejection rates that were out of bounds by d; (impact) level
for both CATSIB WRC and CATSIB WORC. Each plotted point is the number of rejection rates out of bounds
out of 54 cases (6 items x 3 hypothesis tests x 3 sample sizes). Based on exact binomial probabilities, out of 54
tests, one expects 0 to 5 out of bounds due to chance alone about 95% of the time. From Figure 1 it can be
seen for CATSIB WORC that, as the level of impact increases, the number of tests out of bounds also
increases. It is evident that as the impact level increases, the Type I error inflation also increases, but the
degree of inflation is much steeper for CATSIB without regression correction. For the large impact level (d; =
1.0), the number of rejection rates out of bounds for CATSIB WORC were grossly inflated over the chance
levels, while for CATSIB WRC the inflation was only slightly more than the chance level.
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TABLE 3

Type I error study rejection rate results for CATSIB WRC
Sample Sizes for Reference/Focal Groups

250/250 500/250 500/500

Left- Right- Two- Left- Right- Two- Left- Right- Two-

Item Tailed Tailed Tailed Tailed Tailed Tailed Tailed Tailed Tailed
No Differences in Ability Means (d, = 0)
1 0.0275 0.0500 0.0425 0.0675 0.0400 0.0450 0.0625 0.0725 0.0725
2 0.0500 0.0425 0.0525 0.0550 0.0500 0.0600 0.0525 0.0575 0.0500
3 0.0600 0.0575 0.0475 0.0425 0.0500 0.0475 0.0575 0.0425 0.0650
4 0.0325 0.0475 0.0425 0.0525 0.0550 0.0500 0.0525 0.0450 0.0625
5 0.0375 0.0575 0.0500 0.0450 0.0300 0.0250 0.0500 0.0475 0.0450
6 0.0575 0.0550 0.0700 0.0625 0.0300 0.0375 0.0425 0.0400 0.0450
Half Standard Deviation Difference in Group Ability Means (d, = .5)
1 0.0375 0.0600 0.0325 0.0600 0.0400 0.0475 0.0625 0.0550 0.0625
)] 0.0475 0.0350 0.0475 0.0475 0.0500 0.0425 0.0350 0.0525 0.0450
3 0.0600 0.0425 0.0375 0.0400 0.0500 0.0400 0.0575 0.0425 0.0450
4 0.0450 0.0700 0.0650 0.0500 0.0675 0.0575 0.0600 0.0500 0.0525
5 0.0425 0.0325 0.0325 0.0375 0.0475 0.0400 0.0475 0.0550 0.0425
6 0.0475 0.0575 0.0600 0.0475 0.0400 0.0425 0.0400 0.0750 0.0600
One Standard Deviation Difference in Group Ability Means (d, = 1)

1 0.0300 0.0550 0.0275 0.0650 0.0375 0.0450 0.0600 0.0650 0.0650
2 0.0375 0.0500 0.0425 0.0500 0.0350 0.0350 0.0450 0.0375 0.0350
3 0.0450 0.0325 0.0500 0.0750 0.0500 0.0750 0.0400 0.0400 0.0475
4 0.0325 0.0775 0.0650 0.0500 0.0875 0.0800 0.0600 0.0700 0.0750
5 0.0425 0.0325 0.0350 0.0500 0.0575 0.0500 0.0525 0.0375 0.0650
6 0.0525 0.0725 0.0775 0.0400 0.0725 0.0550 0.0275 0.0950 0.0625
TABLE 4

Type I error study rejection rate results for CATSIB WORC
Sample Sizes for Reference/Focal Groups

250/250 500/250 500/500

Left- Right- Two- Left- Right- Two- Left- Right- Two-

Item Tailed Tailed Tailed Tailed Tailed Tailed Tailed Tailed Tailed
No Differences in Ability Means (d, = 0)
1 0.0275 0.0525 0.0425 0.0675 0.0350 0.0475 0.0650 0.0700 0.0725
2 0.0550 0.0425 0.0500 0.0550 0.0575 0.0625 0.0500 0.0625 0.0525
3 0.0575 0.0450 0.0525 0.0400 0.0550 0.0375 0.0600 0.0425 0.0675
4 0.0425 0.0475 0.0400 0.0625 0.0575 0.0525 0.0625 0.0525 0.0600
5 0.0425 0.0600 0.0525 0.0375 0.0300 0.0275 0.0525 0.0450 0.0425
6 0.0600 0.0525 0.0675 0.0650 0.0350 0.0375 0.0475 0.0525 0.0525
Half Standard Deviation Difference in Group Ability Means (d, = .5)
1 0.0375 0.0700 0.0375 0.0550 0.0500 0.0475 0.0450 0.0700 0.0675
)] 0.0425 0.0400 0.0425 0.0375 0.0550 0.0575 0.0200 0.0575 0.0475
3 0.0450 0.0650 0.0375 0.0275 0.0675 0.0325 0.0250 0.0700 0.0550
4 0.0425 0.0825 0.0600 0.0325 0.0850 0.0675 0.0450 0.0725 0.0550
5 0.0350 0.0450 0.0325 0.0425 0.0475 0.0425 0.0350 0.0700 0.0400
6 0.0350 0.0750 0.0650 0.0325 0.0600 0.0450 0.0325 0.1025 0.0575
One Standard Deviation Difference in Group Ability Means (d; = 1)

1 0.0275 0.0775 0.0375 0.0425 0.0475 0.0500 0.0325 0.0775 0.0700
2 0.0350 0.0525 0.0375 0.0225 0.0500 0.0325 0.0325 0.0700 0.0425
3 0.0300 0.0725 0.0375 0.0375 0.1000 0.0750 0.0200 0.0850 0.0600
4 0.0250 0.1025 0.0700 0.0275 0.1500 0.0900 0.0275 0.1125 0.0900
5 0.0200 0.0650 0.0425 0.0375 0.0775 0.0525 0.0300 0.0800 0.0600
6 0.0300 0.1050 0.0800 0.0200 0.1325 0.0750 0.0150 0.1500 0.1050
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FIGURE 1. Type I error study: Number of rejection rates out of bounds

The summaries of Type I error rates by sample size and dy level are reported in Table 5. For this table the
observed rejection rates are expected to fall between .0413 and .0587, 95% of the time if the procedures are
adhering well to the nominal .05 rejection rate. It can be seen from Table 5 that, while the observed average .
rejection rates for CATSIB WRC were generally within chance of the nominal .05 level, they were either
significantly inflated or deflated for CATSIB WORC in the presence of impact with the majority (75%) of
them being out of bounds. For CATSIB WORC there was a consistent pattern of serious deflation of Type I
error rates for the left-tailed hypothesis test across all levels of sample size, and a corresponding serious
inflation of Type I error rates for the right-tailed hypothesis test. Averaging across all items, sample sizes,
and impact levels, at the nominal .05 level the observed rejection rates would be expected to fall between
.0471 and .0529, 95% of the time. The CATSIB WRC Type I error rates were .0487, .0518, and .0509 for the
left-, right-, and two-tailed hypothesis tests, respectively, which were all within the expected bounds. The
corresponding CATSIB WORC Type I error rates were .0394, .0683, and .0540, which were all out of bounds.

TABLE 5
Summary of Type 1 error rejection rate results
With Regression Correction Without Regression Correction
Sample Sizes Difference in R and F Ability Means (d,)
for R/E d =0 d, =5 d. =1 d.=0 d.=.5 d.=1
Left-Tailed Rejection Rates
250/250 0.0442 0.0467 0.0400 0.0475 0.0396 0.0279
500/250 0.0542 0.0471 0.0550 0.0546 0.0379 0.0313
500/500 0.0529 0.0504 0.0475 0.0563 0.0338 0.0263
mean 0.0504 0.0481 0.0475 0.0528 0.0371 0.0285
Right-Tailed Rejection Rates :
250/250 0.0517 0.0496 0.0533 0.0500 0.0629 0.0792
500/250 0.0425 0.0492 0.0567 0.0450 0.0608 0.0929
500/500 0.0508 0.0550 0.0575 0.0542 0.0738 0.0958
mean 0.0483 0.0513 0.0558 0.0497 0.0658 0.0893
Two-Tailed Rejection Rates
250/250 0.0508 0.0458 0.0496 0.0508 0.0458 0.0508
500/250 0.0442 0.0450 0.0567 0.0442 0.0488 0.0625
500/500 0.0567 0.0513 0.0583 0.0579 0.0538 0.0713
mean > 0.0506 0.0474 0.0549 0.0510 0.0494 0.0615
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The Power Study

For this study, only the CATSIB WRC results will be discussed because the CATSIB WORC results were
distorted by the statistical bias evident in its Type I error results (see Table 2). The power study estimation
and rejection rate results are presented in Table 6. In Table 6, items 7 to 11 are of moderate DIF (8 = .050) and
12 to 16 are of large DIF (8 = .100). Within each group, items are mixed in terms of low and high difficulty
and discrimination parameters (see Table 1). Since only positive values of 8 were induced (DIF against the
focal group), only right-tailed and two-tailed rejection rates were of interest, and only the two-tailed results
are presented in Table 6.

TABLE 6
Power study estimation and two-tailed rejection rate (2trr) results for CATSIB WRC
B =050 B=.100
Sample Sizes for Reference/Focal Groups Sample Sizes for Reference/Focal Groups
250/250 500/250 500/500 250/250 500/250 500/500
Item B 2Trr B 2Trr B 2Trr B 2Trr B 2Trr B 2Trr
No Differences in Ability Means (d, = 0)
7 0.0470 0.2400 0.0520 0.3200 0.0500 0.4450 12 0.0980 0.7200 0.1010 0.8375 0.1030 0.9625
8 0.0500 0.2400 0.0480 0.2625 0.0500 0.3425 13 0.0980 0.5775 0.0990 0.7125 0.1010 0.8750
9 0.0490 0.2100 0.0540 03100 0.0520 0.4025 14 0.1010 0.6875 0.1050 0.8100 0.1020 0.9250
10 0.0490 0.4525 0.0470 0.4725 0.0500 0.7375 15 0.1000 0.9500 0.1020 0.9725 0.1000 1.0000
11 0.0480 0.2325 0.0490 0.3150 0.0500 0.4600 16 0.0970 0.7025 0.1000 0.8650 0.0980 0.9350
mean  0.0490 0.2750 0.0500 03360 0.0500 0.4775 0.0990 0.7275 0.1010 0.8395 0.1010 0.9395

Half Standard Deviation Difference in Group Ability Means (d, = .5)

7 0.0480 0.2300 0.0530 0.3200 0.0500 0.4300 12 01000 0.7125 0.1040 0.8250 0.1020 0.9450
8 0.0500 0.2100 0.0480 0.2400 0.0480 0.3250 13 0.0990 0.5625 0.0970 0.6925 0.1020 0.8750
9 0.0500 0.2375 0.0530 0.2925 0.0520 0.4000 14 0.1040 0.6775 0.1070 0.8025 0.1030 0.9250
10 0.0500 0.3975 0.0500 0.5125 0.0500 0.7300 15 0.1020 0.9525 0.1050 0.9850 0.1000 1.0000
11 0.0460 0.2225 0.0460 0.2725 0.0500 0.4225 16 0.0970 0.6675 0.0920 0.7475 0.0970 0.9275
mean  0.0490 0.2595 0.0500 03275 0.0500 0.4615 0.1000 0.7145 0.1010 0.8105 0.1010 0.9345
One Standard Deviation Difference in Group Ability Means (d, = 1)
7 0.0500 0.2275 0.0530 0.2850 0.0510 0.3700 12 0.1010 0.6100 0.1070 0.7475 0.1030 0.9150
8 0.0520 0.1725 0.0470 0.2025 0.0490 0.2650 13 0.1010 04725 0.1000 0.6275 0.1030 0.8350
9 0.0510 0.2075 0.0530 0.2300 0.0520 0.3625 14 0.1090 0.6250 0.1080 0.6950 0.1070 0.8825
10 0.0520 0.3850 0.0550 0.5400 0.0520 0.6350 15 0.1010 0.8875 0.1120 0.9800 0.1010 0.9925
11 0.0430 0.1825 0.0400 0.2125 0.0500 0.3525 16 0.0940 0.5925 0.0800 0.5425 0.0960 0.8450
mean _ 0.0500 0.2350 0.0500 0.2940 0.0510 0.3970 0.1010 0.6375 0.1010 0.7185 0.1020 0.8940

In terms of DIF estimation, in almost all cases, the average amount of estimated DIF (8) was close to the
true values (.050 for items 7 to 11, and .100 for items 12 to 16). However, there were a few cases of estimation
bias. For the highest level of impact and the smallest two sample sizes, the high discriminating, high
difficulty level items (items 11 and 16) were consistently underestimated with the underestimation being

fairly substantial for the case of unequal R and F sample sizes (8 values of .040 and .080, respectively, for
items 11 and 16). Also, an approximately 10% overestimation (i.e., positive) bias occurred with items 10 and
15 when impact was highest and the reference group size was twice the focal group size. To explore the
reason for these statistical biases, we monitored the average number of ability interval cells used in the
CATSIB statistic calculations along with the average percentages of R and F test takers included in those
cells. These results are presented in Table 7. At all three levels of sample size for the two lowest levels of
impact (dr = 0 and .5) and at the highest level of sample size for dr = 1, CATSIB generally achieved on
average the goal of including 92.5% or more of the R and F test takers in the statistic calculation. However, at
dr =1 at the lowest two sample sizes, the average percentage of test takers included for R in the 500/250 case
and for both R and F in the 250/250 case was well below the targeted 92.5%. As indicated in Table 7, the
reason for this was that CATSIB was constrained to use no fewer than 20 ability interval cells while fewer
than 20 cells were needed for these cases. Thus, the automatic reducing of the number of ability interval cells
experienced an unexpected floor effect. Hence, the underestimation of 8 for items 11 and 16 for d; = 1 with
the smallest sample sizes is probably due to the exclusion of too many test takers from the statistic
calculation. Similarly, the overestimation bias with items 10 and 15 may be due to the reference group having
its test takers excluded at a higher rate than the focal group. Lowering the limit on the minimum number of
cells might eliminate this bias. The biases almost totally disappear at the highest sample size.
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TABLE 7
Average number of cells used and percentage of test takers included in CATSIB statistic calculation

. Average Percentage of Test Takers Included

Average Number of Cells Used Reference Group Focal Group
Sample Sizes Difference in R and F Ability Means(d,)
for R/F d. =0 d,=.5 d. =1 d;=0 d;=.5 d =1 d, =0 d,=.5 d, =1
250/250 29.3 22.0 20.0 94.7 93.2 85.6 94.7 93.9 87.6
500/250 36.8 26.2 20.1 94.0 93.3 86.4 95.4 95.9 93.1
500/500 63.2 44.5 21.2 94.2 94.2 92.3 94.1 94.4 93.0

We now turn to the rejection rate results in Table 6. The detection of large DIF (8 values of .100 or more)
at the pretest stage is a critical requirement of a CAT DIF procedure. The results in Table 6 show that CATSIB
has power rates of over 90% for 10 out of 15 cases for the § = .100 items for sample sizes of 500 in each group.
And even when sample size is as small as 250 in each group, the CATSIB power rates for the 8 = .100 items
still were over 66.7% for 9 out of 15 of the f = .100 cases. Because large DIF is defined as > .100, the
detection rates for the 8 = .100 case represents the minimum CATSIB large DIF power rates. That is, the
CATSIB power rates can be expected to be substantially higher for most large DIF items because most large
DIF items will have f values larger than .100.

As expected, the rejection rates generally increased as the amount of DIF increased and as sample size
increased. Averaging over items 7 to 11 and separately over items 12 to 16, as the DIF level increased from
moderate (8 = .05) to large (8 = .1), the average power rates went up from 34% to 80% for the two-tailed
hypothesis test. As sample size increased from 500 (ng = 250, np = 250) to 1,000 (ng = 500, np = 500), the
average power for the 5 items with f = .100 increased from 69% to 92% for the two-tailed hypothesis test.
Even for small samples such as ng = 250, ny = 250, the power was remarkably high (60% or more for most
items) for 8 = .100.

The rates also varied across the different items. This variation is mostly characterized by rejection rates
being generally higher for items that have higher discrimination and lower difficulty levels. The
discrimination effect can probably be attributed to the higher discriminations reducing the error variance in
the item response data. The difficulty level effect is probably due to the guessing parameter having a smaller
effect on the item responses, which, again decreases the error variance in the data.

Impact level also had some effect on the rejection rates. Generally, as impact increased, the rejection rates
went down. This effect was mostly constrained to going from dy = 0.5 to dr = 1.0. There was very little effect
in going from dy = 0 to dr = 0.5. And for the DIF values of most interest, 8 = .100, the effect of impact was
practically negligible for the largest sample size. In other words, given 500 test takers in each group, the
power of CATSIB to detect any large DIF values is quite high and almost unaffected by impact.

In summary, the simulation results have shown that CATSIB with the regression correction has exhibited
good statistical DIF detection properties. The regression correction was very effective in controlling for Type
I error even for impact levels as large as one standard deviation.

The power rates for items exhibiting the minimum amount of DIF to be considered large DIF were
exceptionally high (usually over 90%) when there were 500 test takers in each group and generally well over

_60% when the number of test takers was as small as 250 in each group.

Concluding Remarks

This study has shown that CATSIB can be a practical and reliable statistical procedure for detecting DIF
on computerized adaptive tests. It has performed satisfactorily under the conditions controlled for in this
study and therefore shows high potential for operational use. The use of § for assessing the amount of DIF
can be very useful in applications. Because §, the estimated degree of DIF, is the difference in probabilities of
correct responses between R and F groups on the studied item, this index can be used in judgments about
whether or not to keep an item in the pool for future administrations.

Further studies are needed to investigate the performance of CATSIB. For the most difficult items in the
presence of large impact, too many test takers were excluded from the statistic calculation because the
minimum number of interval cells was fixed at 20. Future simulations are planned where the minimum
number of cells is allowed to go as low as necessary to meet the required percentage of included test takers.
As another way of dealing with the difficulty of matching reference and focal group test takers on difficult
items in the presence of large impact, a kernel-smoothed version of CATSIB is also under development.
Future studies are also planned to increase the realism in the simulation studies. Future studies will use
estimated item parameters rather than the known true values; also the introduction of content constraints,
other exposure control algorithms, and multistage testlet designs are being considered. Furthermore,
CATSIB’s performance on real data must also be evaluitgﬁ.
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